SMS Spam Filtering Using Probabilistic Topic Modelling and Stacked Denoising Autoencoder
نویسندگان
چکیده
In This paper we present a novel approach to spam filtering and demonstrate its applicability with respect to SMS messages. Our approach requires minimum features engineering and a small set of labelled data samples. Features are extracted using topic modelling based on latent Dirichlet allocation, and then a comprehensive data model is created using a Stacked Denoising Autoencoder (SDA). Topic modelling summarises the data providing ease of use and high interpretability by visualising the topics using word clouds. Given that the SMS messages can be regarded as either spam (unwanted) or ham (wanted), the SDA is able to model the messages and accurately discriminate between the two classes without the need for a pre-labelled training set. The results are compared against the state-of-the-art spam detection algorithms with our proposed approach achieving over 97% accuracy which compares favourably to the best reported algorithms presented in the literature.
منابع مشابه
Real-time Dynamic MRI Reconstruction using Stacked Denoising Autoencoder
In this work we address the problem of real-time dynamic MRI reconstruction. There are a handful of studies on this topic; these techniques are either based on compressed sensing or employ Kalman Filtering. These techniques cannot achieve the reconstruction speed necessary for real-time reconstruction. In this work, we propose a new approach to MRI reconstruction. We learn a non-linear mapping ...
متن کاملDecoding Stacked Denoising Autoencoders
Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretat...
متن کاملPHD: A Probabilistic Model of Hybrid Deep Collaborative Filtering for Recommender Systems
Collaborative Filtering (CF), a well-known approach in producing recommender systems, has achieved wide use and excellent performance not only in research but also in industry. However, problems related to cold start and data sparsity have caused CF to attract an increasing amount of attention in efforts to solve these problems. Traditional approaches adopt side information to extract effective...
متن کاملSMS spam filtering: Methods and data
Mobile or SMS spam is a real and growing problem primarily due to the availability of very cheap bulk pre-pay SMS packages and the fact that SMS engenders higher response rates as it is a trusted and personal service. SMS spam filtering is a relatively new task which inherits many issues and solutions from email spam filtering. However it poses its own specific challenges. This paper motivates ...
متن کاملMarginalized Stacked Denoising Autoencoders
Stacked Denoising Autoencoders (SDAs) [4] have been used successfully in many learning scenarios and application domains. In short, denoising autoencoders (DAs) train one-layer neural networks to reconstruct input data from partial random corruption. The denoisers are then stacked into deep learning architectures where the weights are fine-tuned with back-propagation. Alternatively, the outputs...
متن کامل